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S M A L L - D I A M E T E R  S T R U C T U R E  W I T H  U N I L A T E R A L  

I N S I D E  C O N T A C T S  

A. G. Kolpakov UDC 539.3 

An asymptotic expansion was formally constructed in [1] for the problem of contacting elastic bodies with a small 

diameter e. Passage to the limit (at e --, 0) yields a unidimensional problem. The corresponding equilibrium equations coincide 

with the classical equations [2, 3]. The constitutive equations are obtained by solving a so-called mesh problem on a mesh with 
a periodic structure. This approach can be used in particular to study textiles [4]. 

1. Formulation of  the Problem. We will examine a periodic structure formed by elastic elements that can be placed 

in ideal contact (Fig. 1). The structure occupies the region fl~, having the characteristic diameter e < I (which is formalized 

in the form e --, 0 [1, 2]). A cell of the structure (shown in Fig. 2 in terms of the dimensionless variables y = x/e) has the same 

characteristic dimension. The elastic constants of  the elements of this structure will be designated as e-aaij~(x/e). The functions 

aijra are assigned to be periodic with respect to Yl- They have the period m (Fig. 2) and are bounded. The coefficient e -4 is 

introduced to account for the order of bending stiffness. The presence of contacts is accounted for as follows [5, 6]. We 
introduce the function space 

V, = {u E H t (Q,): u (x) = 0 on ~t (see F ig . l ) }  

and formulate the condition for the displacements u s of elements of the structure: 

u' ~ M(V , )  = {u ~ V,: [un] = 0 ont_he contact surfaces } (1.1) 

(where n is a normal vector). By contact surfaces, we mean surfaces on which the structural elements might come into contact. 

If we a priori exclude the possibility of the existence of such surfaces, then the entire surface of  the elements is taken as the 

contact surface. In local variables y within a given cell P] = e-lP~ = {y = x/t: x E P~} (see Figs. I and 2) the contact 
condition has the form 

U' (xl, y) E 2~/= {u E H l (Pt): [un ] = 0 (1.2) 

on the contact surfaces and u is periodic with respect to Yl, having the period m}. The variable x t in (1.2) is "frozen." The 
braces in (1.1) and (1.2) denote a jump - -  the difference in the values of the function on different sides of a contact surface [6]. 

The displacements u ~ are found by solving the variational inequality [5, 6] 

f o~ (u' - v)iflo - e -2 f g (u' - v) as ~ - e - '  f f (u' - v) au 
r, o~ (1.3) 

for any v E M(Vs), where 

ob = ~-'ai~, ( x / e )  ul.,. 
(1.4) 

Summation is carried out over the repeating indices. 

Novosibirsk. Translated from Prikladmya Mekhanika i Tekhnicheskaya Fizika, No. 1, pp. 128-135, January-February, 

1994. Original article submitted November 25, 1992; revision submitted February 9, 1993. 

0021-8944/94/3501-0131512.50 �9 Plenum Publishing Corporation 131 



Fig. 1 Fig. 2 

Note 1. The multiplier e - 4  in Hooke's law (1.4) accounts for the fact that the bending stiffness of the beam is proportional to 

its diameter to the fourth power [7]. The proportionality of the forces f and g to the quantity e -2 is related to allowance for their 
orders in beam models [7, 3]. 

If the conditions aijkt, f, g E C (R 3) are satisfied and the region Il8 has the boundary C 1, then problem (1.1), (1.3), (1.4) 

is unambiguously solvable in M(Vs) for any ~ > 0 [5, 6]. Our goal is to analyze the problem for ~ --, 0. 

2. Formal Asymptotic Expansion. We will analyze the problem by using the two-scale method [6], which is based on 

simultaneous use of  the initial x and local y = x/e variables and representation of the solution in the form of a series in powers 

of e, i.e., we wiU construct a formal asymptotic expansion [1] in the form proposed in [3] 

u '  = u (~ (xl) + cu  w (xl, y) + . . . .  ~ ekU(k) (xz, y); 
k=0 

v = v ~~ (xi) + ev CI) (xl, y) + . . . .  ~ ekVCk) (xl, y); 
kffiO 

(2.1) 

(2.2) 

t --4 (--4) ~ mr.I0n) oij = e o i j  + . . . .  ~ -/j (xl, y), (2.3) 
m= - 4  

where the functions in the right sides of  (2.1)-(2.3) are periodic with respect to Yl, having the period m. 

Let us change over to the variables xl, y in (1.1) and (1.3), (1.4) as well. In these variables, the functions f(x 1, y) are 

differentiated according to the rule 

0 O -1 a o ~ - l  o ~ . - , ~ + ~  - - ,  - -  - -  ( c~=2 ,3 ) .  (2.4) 
0xl Oxt Oyl Ox= Or, 

Here and below, the Greek-letter indices take values of 2 and 3, the Roman-letter indices have values of 1, 2, and 3, and the 

following notation is used: , Ix  = O/Ox I and ,iy = 0/igy i. 

Substitution of  the variables in the integrals from (1.3) and substitution of (2.4) yields 

m+k-I (m) k) m+k~(m)..~k) ,~ d l )  "~ 
k=O m = - 4  t)l  

+ ~ e k f g w C * ) d s ; , , - - ~ l ' f f w C ' ) d v  
k=O FI k=O ~II 

(2.5) 

for any v E M (ill). 

Here, II l = {(x 1, 3'2, Y3): X E Ils}, I ' l  ---- {(xl, Y2, Y3): X E I'8} have a characteristic diameter equal to unity; w r = 
utk) _ v~). 

Insertion of  (2.1) and (2.3) into Hooke's law (1.4) gives [3] 

a(=) (re+s) ("+~ ( m = - 4 , - 3  . . . .  ). ii = a/m (y) uk.~ + aijkx (y) Uk. t~ (2.6) 

3. Equilibrium Equations.  We will only briefly discuss the derivation of the equilibrium equations for thin structures, 

since this procedure has by now become standard [2, 3, 8]. We will examine Eq. (2.5) with w = w~ E C t ( [ - 1 ,  I]). In 

the given case, it takes the form 
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f e",+~o~i"),~~ - f gw'~ ~ - f fw'~ (m = - 4 ,  - 3  . . . .  ) (3.1) 
~1 rl f21 

for any v (~ E C 1 ( [ - 1 ,  1]). 

Note 2. The following relationship exists between the integrals of rapidly oscillating functions of  the form f(x 1, x/e) and 

their means [3] at e --- 0 
1 

f / (x~, x/~) d~ --- f b9 (xO axe, 
~1 - I  

l 

f / (x~, x / 0  as ~ f q), (x~) axe, 
1"t -1 

where (f) = m - ~ f f ( x ~ ,  Y) dy is the mean over a cell; (])~ = m -l f f ( x i ,  y) dy is the mean over the lateral surface of the 

cell. It should be noted that we are examining a case in which the projections of I] 1 (and 0~) on the Ox t axis form the segment 

[ - 1 ,  1] (see Fig. 1). 

With allowance for Note 2, we can use (3.1) a te  ~ 0 (keeping in mind thatv (~ E C ( [ - 1 ,  1]) to obtain the equalities 

(~(,-)\ va / . t~=0 (rn =-4, -3 ) ,  

(o~;2~).~ = (g,),  + (I,) .  
(3.2) 

The quantities (an (m)) represent axial forces. 

Now, in (2.5) we put w = ew O) (Xl, y)  ~-- e(Y2V2(X|) + y3v3(xl)) (i.e., v = u (1) + ew 0). Here, v E M (0 0, which 
can be proven directly). For the case being examined, (2.5) takes the form 

~,~2  f m (m) [~. Oil (V2ib2j + I;3j33i) + e("+l)O~ '') (y2U~.t,. + y303/.1.~) ] dv  + 
m~-4 f21 

+ f g (y2v: + y3v3) ds ;* - ~ f f (y2v2 + y3v3) do. 
FI m=-4 t~l 

Introducing moments by means of the formula [3] Mij = (yjail (m)) and allowing for Note 2 and the fact that v 2, v 3 E C 1 ( [ -1 ,  
1]), we find 

(a~2 '))=0 (ct=2,3, i=1,2,3),  
- ~ , 2 ~  + <o~23'> = 0, 

-~d .~ ,  + (o~: ~') = (~,yo), + O',y,). 
(3.3) 

4. Constitutive Relations. The specifics of the given problem are manifest to the greatest extent when the constitutive 

relations are derived [1-3, 6-12]. Let us proceed to the construction of these relations. 

We choose a test function in the form v = ~v(l)(y), where v(t)(y) is periodic with respect to Yl and has the period m. 
For such a choice, by equating terms of order e -4 in (2.5) we have 

f ~(-4)....(1) .I, __. U(I) ..,q ~vi.~uv ;, 0 ( w  (1) - v (1)) 
Q1 

for any v E M (fit). Considering the periodicity of  the functions with respect to Yl and taking Note 2 into account, we can 
rewrite this inequality in the below form (see the proof in [6]) 
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f ~(-4),,,(l)dv ;~ 0 v, I ,*,,jy=.~ 
el (4.1) 

for any v 0) E 1(1, where in accordance with (2.6) 

o~)-4, ao, ,  (y) m + (y) , ~o~ (x~). (4.2) 

In the analogous linear problem (in the absence of contacts), an important role is played by the fact that it is possible 

to obtain a solution corresponding to the term aij,,l(y ) u,,Ax(~ in (4.2), as well as a solution of the homogeneous problem 

in explicit form [3]. These solutions are also useful to have in the present case, if they are obtained by another method. Using 
the approach in [9], we represent the solution of (4.1), (4.2) as 

u(:) U(1) (0) = - y . u . .  ~ ( x : )  e :  - y . s r~T  (xl) ~ + V (xl), (4.3) 

I~ at ~=2, 
where ~ = a t  r 3; s! = 0; s 2 = 1; s 3 = - 1 ;  e i are orthonormal basis vectors of  the standard coordinate system; 

r 0, V(x 0 are functions (the determination of which is a subject for further study) satisfying the condition ~ ( +  1) = V(+ 1) = 

0; U (1) is a new unknown function; the remaining terms in the right side of (4.3) are introduced as in [3]. Insertion of (4.3) into 
(4.1) gives 

f olj-*' (U m - v ' " ) , . j y d v  - (o~S*') Ut~ --'~02~'-*' -- 0.~2'-~'\/ ~0 (X,) ;= O. 
PI 

The last two terms in this inequality are zeros; the first is zero due to (3.5); the second is zero due to the symmetry of aij with 
respect to ij (and the consequent symmetry of aij (m), m = - 4 ,  - 3  .... ). Also, insertion of (4.3) into (4.2) yields 

= (o). 
(4.4) 

As a result, we arrive at the problem 

f [a,,, (y) U~,I.~ + a~i,t (y) u[.~ (xl) ] (Um v m " - ) ~ , z d y  ~ 0 
P1 

(4.5) 

for any v E I(1. 
N o t e 3 .  We introduce the function W = U tl) + ul,lx(~ and observe that (4.4) represents the problem of the 

microscopic deformation of  a cell (of a so-called cellular structure [13-15]) corresponding to averaged (macroscopic) strains 

ul.lx (~ This observation is useful when a mesh problem is being solved by modeling it by simplified structures [4] or when 
allowance is being made for its specific features (such as in [10, 13-17]). 

Variational inequality (4.5) is analogous to that obtained in [6] in the averaging of a monolithic body with a periodic 
system of distributed cracks. The difference in [6] was that the periodicity condition was formulated for all of  the variables and 
the cell had no free surface. However, these differences are unimportant for proving the solvability of  problem (4.5) and the 

uniqueness of  its solution to within the functions r V (the proof is analogous to that given in [6]). We will use U(uhlx (~ to 

represent the solution of (4.5). Having inserted k into (4.4) and having averaged the result, we obtain the constitutive equation 

= uk.~ (ul.L,) + a,,n (Y) ,-~.u/, < o i ? ' )  (a,~k, ( y )  Co, . Co, (4.6) 

which connects the axial force with the axial strain Ul,lx (~ Following [6], we establish that 1) (4.6) is the hyperelastic law; 2) 
with i s  = 11 and with the boundary condition ul(~ (+1)  = 0 [this condition following from initial boundary condition (1.1) 

and expansion (2.1)], Eq. (3.3) has the unique solution ut C~ (xl) = 0. From this, in turn, we find that Ut (~ (y) -- 0 and (4.3) 

takes the form 
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blCl) (o) ( ~  = - y ,  uo. L, ,.'~) et - y~s~o (&) e~ + V (x0. (4.7) 

Then trij (-4) = 0 [see (4.2)1, and since Mij (-4) = 0 we obtain (g , ( -3))  = 0 [see (3.3)1. 

Let  us examine the choice of  test function v = ev(0(y). As above, the terms from (2.5) are of  the order  e -3.  For  these 

terms we have 

f_(-3)o.ll).h ~ 0 (W (1) = U (I) V (I)) 
el u/j ~ , , . ~  - (4.8) 

for any v E lft, where in accordance with (2.6) 

(-3) (2) r 
cr/~ = aijk, (Y) u,.,y + a~,k~ (Y) uk. ~,-. (4.9) 

Substitution of  (4.7) into (4.9) gives 

( - 3 )  , (2) 
oq = ai~,, (Y) -k.v + a0kt (y) Vk.i~ (&) - 

a , , n  (y) YJ'~)L,.t,- (xti + aV~t  (Y) y,s,~.~, .  ( & ) .  
(4.10) 

Equation (4.10) includes the quantities VkA x. Of the latter, the only quantity having physical  significance is Vhl  x - -  

corresponding to axial deformation.  In the linear case, if we use the solutions obtained in explicit  form for the mesh problem 

(4.1), (4.2) we can exclude terms containing V,,Ax (a  = 2, 3) from (4.10) [3]. In the present case, as in [9] we represent u (2) 

in the form 

u (2~ = U C2~ - y , W , .  t~ ( x l )  e l .  

Inserting (4.11) into (4.8), with allowance for Note 2 we fred 

1 

f ( - 3 ,  ..,(2, v(2~),,~#o f (oi: 3)) v~ ~dx~ ;, O. oq t , u  - -  - -  . 
xq I - 1  

(4.11) 

(4.12) 

The last integral in (4.12) is equal to 

1 
f (-3) . \ l r2=l (~ , . ) . ~v .  (x,) dx~ + (o~: ~) V. ~x~)l~=-~. 
- I  

When m = - 3 ,  the last equality is a consequence of  (3.2) and the fact that V,,(:t:I) = 0. Then taking into account the 

periodicity of  the function in the remaining integral in (4.12), we arrive (as in [6]) at the fol lowing inequality for a cell of the 

structure 

f o~; "31 (U (2) -- vC2))i.~dy ;, 0, 
el (4.13) 

which with allowance for  (4.10) and (4.11) takes the form 

f {a,j,, (y) ~2~ _ a,,r,l (y) s~o.~ (x0 - 
PI  

(o) - a41t (y) y,.u,~.L,t,, (xt) + a l i .  (Y) Vl.~, (xt) l (U (2) - v(2))i./flY ;~ 0 ( 4 . 1 4 )  

for any v E M. 
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We introduce the notation: e = Vt.tx(X~) is the axial deformation of the beam; p~ = u,,,~xxx(~ is the curvature of 

the beam (in the Ox,, plane); ~ = ~,~x(Xt) is the angle of twist per unit length. Then mesh problem (4.14) can be rewritten in 
the form 

f [a,~k,~2.)~ - "ao~l (y) s~V - a~j~ (y) y~p, + a~j~t (y) e ] (U (:) - v(Z))~.zdy ;~ 0 
PI 

(4.15) 

for any v E ~ .  

In contrast to the linear case [3, 17], the resulting problem cannot be broken down into mesh problems corresponding 
to axial tension, bonding, and torsion. 

We will use U (2) (~b, o,~, e) to represent the solution of (4.15). It follows from (4.8) and (4.9) that 

U~, 2) (-3) = a0~, (y) k.a ( %  P , ,  e)  - ao~l (y) s~ - ~p - a ,~ t  (Y) Y,p, + aqn (y) e. oq (4.16) 

Averaging (4.16) over a cell of  the structure, multiplying by yo, and averaging again, we obtain the constitutive relations of the 
given structure as a uniform unidimensional body: 

U~L 2) (ah (o17 ~)) (,,1~, ~,o , ~ ,  p~, e)) - (aH~l (y))  s~V 

- (am1 (Y) y~) P. + (atut (Y)) e, 

�9 = (yf~a~L~, k.e (~P, 9-, e)) - ( y ~ a m l  (Y)) sv~P - 

- ~ 0 a ,  m (Y) Y, )  9 ,  + 0 '~a ,m (Y))  e .  

(4.17) 

5. Boundary Conditions. The nonlinearity of the problem does not affect boundary conditions (1.1) or expansion (2.1). 

Thus, the boundary conditions for the unidimensional problem are obtained in the same manner as in [3] and have the form 

V~(__l) 0, u~)(-+l) co) / + 1 ) = 0 ,  ( _ 1 ) = 0 .  = = u , . t ,  t -  W ( 5 . 1 )  

6. Closed System of Equations for the Unidimensional Problem. As noted above, parts of  Eqs. (3.3) and (3.5) turn 
out to be satisfied identicaffy. We write the rest of  these equations as: 

( 3 )  ML['t, + (o~ 21) = (glY-)v + (fiY,,); (6.1) 

( a ~ 2 ' ) . , ,  = (g,)v + (L) .  ( 6 . 2 )  

By differentiating (6.1) with od = od and using (6.2), we can exclude (al,, (-2)) from this equation when i = 1: 

-3) 
M(,,a.L,L~ = --  (g,,)v --  ( / , , )  + (glY,~)v.~ + (f:Y, ,) , t~.  (6.3) 

As can be seen, (al,~ (-2)) corresponds physically to shearing forces [7]. When i ~ 1, we obtain torsion equations. Here, we 

introduce moment in torsion M = Mz3 (-3) - M32 (-3) [3]. With allowance for the symmetry of  amn (-2) with respect to nm, we 
obtain the following from (6.1) for the turning moment 

M',5 3) = (g2Y3), - (g3y2), + (fa3) - (f~Y2). (6.4) 

Together with constitutive relations (4.17) and boundary conditions (5.1), Eels. (6.3), (6.4) form a closed system. Nonlinear 

constitutive relations (4:17) distinguish the present approach from conventional beam theories. 

7. Modeling a Mesh Problem with Finite-Dimensional Problems. Mesh problem (4.14) can be examined relative to 

the displacements 

U - yos~e~xp - w ~ 9 ~  + y i e l e ,  
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I A.~A§ 
Fig. 3 

where w" are the displacements, determined by the condition (clef w%a = y,~lStl. Since the strains y,,~lSn satisfy the 
compatibility condition [7], the displacements w ~ exist (and are determined in explicit form [7]). This observation is useful in 
introducing simplified models for mesh problems. As an example, we will present a simplified model of braided fibers (see Fig. 
2) working in tension. The model is shown in Fig. 3, where I represents seven elastic elements corresponding to straight internal 
(woven) fibers, II corresponds to an elastic element which represents a braid, and III corresponds to a fiber-braid contact. The 
stiffness of the "included" contact is determined (see Fig. 2) similarly to the stiffness of the "floor" for beams on an elastic 
foundation [7]. The braid in Fig. 2 has six contact points within the cell. The stiffness of the contact can be determined on the 
basis of the fact that misaligned cylinders are in contact with one another in the given case. We should note that A_ and A+ 
are subject to the condition that their mutual displacement be equal to e. We ignored the bending of the cell that might have 
occurred (due to its asymmetry). 

8. Dynamic Problem. This problem arises when allowance is made for inertial forces [which corresponds to the 
-2 c in Eq. (1.3)]. The analog of inequality (1.3) is obtained in this case (this is examined replacement of e-2f by e-2f + c ou,tt 

in greater detail in [5, 6]). The multiplier c -2 in the dynamic term is connected with allowance for the order of the linear density 
of the beam. The formal asymptotic expansion which is analogous to (2.1)-(2.3) can be used to solve the given problem. As 
above, only the equation of transverse vibration is of interest in the calculations: 

- 3 )  / ^ ,  \ U (o) (8.1) 

The nonclassical term in (8.1) is the term containing u~.alx (~ At the same time, the appearance of this term has a natural 
explanation within a mechanical context. The multiplier ~oy,,) with u~.mx (~ characterizes the asymmetry of the mass distribution 
over the cross section of the rod (this asymmetry being expressed in dynamic processes). For symmetrical beams, (py,,) = 0. 
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